

HANCOCK COAL PTY LTD

Calibre Rail Alpha Coal Project – Rail Phase 1B

Detailed Floodplain Study Mistake Creek

HC-CRL-24100-RPT-0137 CJVP10007-REP-C-015

MASTER COPY

			of Ju		11	
0	Issued for Use	J. Mansfield	G. Boytar	S. Ariyaratham	J. Bryce	Nov 2011
В	Issued for Client Review	J. Mansfield	G. Boytar	S. Ariyaratnam	00	Nov 2011
A	Issued for Internal Review	J. Mansfield				Nov 2011
Rev	Description	Author	Checked	Approved	Authorised	Date

Issue Date: Page No:

CONTENTS

1.0	PURF	POSE		1
2.0	PROJ	IECT BACKG	ROUND	1
3.0	REFERENCES, CODES AND STANDARDS			
4.0	ABBF	REVIATIONS		3
5.0	INTR	ODUCTION		4
	5.1	Floodplain	Location and Description	4
	5.2	Mistake Cr	eek	6
6.0	COM	MUNITY CO	NSULTATION	6
7.0	BANK	KABLE FEAS	IBILITY STUDY (BFS)	6
	7.1	Design Crit	eria	6
	7.2	Design Pro	cess	7
8.0	FLOC) DPLAIN MC	DELLING DESIGN CRITERIA	8
9.0	DETA	AILED FLOO	DPLAIN ANALYSIS	8
	9.1	Introductio	n٤	8
		9.1.1	Hydrology	9
		9.1.1.1	Previous Hydrology	
		9.1.1.2	Additional Information	
		9.1.1.3 9.1.1.4	Flood Frequency Analysis	
		9.1.2	Hydraulic Modelling	
		9.1.2.1	MIKE Flood Model	5
		9.1.3	Sensitivity Testing18	8
	9.2	Floodplain	Drainage Structure Recommendations27	1
	9.3	Results		2
10.0	CON	CLUSION		5
APPEND	IX A F	FA ANALYS	IS20	6
APPEND	IX B F	RORB RESU	LTS27	7
APPEND	IX C F	LOOD MAP	S28	8

1.0 PURPOSE

The purpose of this report is to analyse and assess the impact of the Alpha Coal Project (ACP) railway line as it traverses the Mistake Creek floodplain system. The analysis provides recommendations of the cross-drainage infrastructure required to minimise impacts to existing flowpaths and to meet the conditions set in the Environmental Impact Study (EIS) and the Supplementary Environmental Impact Study (SEIS).

This report provides details of the floodplain analysis undertaken for the Mistake Creek system. It details the pre- and post-development inundation extents for the 5, 50 and 100 year Average Recurrence Interval (ARI) events. The results for depths of flow, velocity fields and afflux from the development of the railway have been assessed for the approved design criteria of the 50 year ARI event.

2.0 PROJECT BACKGROUND

Hancock Coal Infrastructure Pty Ltd (HCIPL) are undertaking an investigation into the development of a 30 Mtpa open pit, thermal coal mine within the Galilee Basin 50km north of the Alpha township in central Queensland. This project is known as the Alpha Coal Project (ACP). A project overview can be seen in Figure 1.

As part of this project, a 500km standard gauge rail alignment and associated infrastructure is required to transport the coal from the mine, at Alpha, to the port at Abbot Point, north of Bowen. Calibre has recently completed the Bankable Feasibility Study (BFS) for the rail alignment and is continuing to progress the identified critical path detail design activities.

Subsequent to this, an EIS has been prepared and corresponding SEIS compiled to clearly define design parameters to be adhered to in any further investigations, and eventual, design.

Part of the stakeholder response to the EIS identified specific concerns that were raised in relation to the drainage criteria approved by Hancock Coal in the BFS. The SEIS has taken into account these concerns and the drainage criteria updated to address the issues raised in the EIS. This Detail Floodplain Study takes into account these changes in the drainage criteria developed for the SEIS.

Document No:HC-CRL-24100-RPT-0137
CJVP10007-REP-C-015Revision No:Rev 0Issue Date:November 2011Page No:2

Figure 1: Proposed Alpha Coal Project railway alignment

3.0 REFERENCES, CODES AND STANDARDS

The following reports and codes were used as part of the floodplain modelling:

- BFS Drainage Engineering Report (CJVP10007-REP-C-001 / HC-CRL-24100-RPT-0022);
- Queensland Government Climate Change Guidelines: *Increasing Queensland's resilience to inland flooding in a changing climate* (2010);
- Australian Rainfall and Runoff (AR&R);
- C&R land holder consultation;
- EIS and SEIS.

The following data sources were used for the hydrologic and hydraulic modelling:

- Department of Environment and Resource management (DERM) blended topographic survey data (Shuttle Radar Topography Mission (SRTM) and combined contour data);
- LiDAR data for current alignment (600m wide corridor with a vertical accuracy of ±100mm) provided by HCIPL;
- LiDAR data flown for BFS alignment (approximate 4000m wide corridor with a vertical accuracy of ±500mm) provided by HCIPL;
- DERM streamgauge historical data;
- Bureau of Meteorology (BoM) Intensity-Frequency-Duration (IFD) regional data.

4.0 ABBREVIATIONS

ACP	Alpha Coal Project
AEP	Average Exceedance Probability
AR&R	Australian Rainfall and Runoff
ARI	Average Recurrence Interval
BFS	Bankable Feasibility Study
BoM	Bureau of Meteorology
C&R	C&R Consulting Pty Ltd
CatchmentSIM	Hydrologic catchment delineation program
CSP	Corrugated Steel Pipe
DERM	Department of Environment and Resource Management
EIS	Environmental Impact Statement
FFA	Flood Frequency Analysis
HCPL	Hancock Coal Pty Ltd
HCIPL	Hancock Coal Infrastructure Pty Ltd
IFD	Intensity-Frequency-Duration
Lidar	Light Detection and Ranging
RORB	Rainfall and runoff routing program
SEIS	Supplementary Environmental Impact Statement
SRTM	Shuttle Radar Topography Mission
TOF	Top of Formation

5.0 INTRODUCTION

The proposed rail alignment for the ACP currently crosses the Mistake Creek floodplain. The analysis was conducted for this system during the BFS and identified that further detailed hydraulic analysis was required due to the complex floodplain interaction that occurs at the proposed railway floodplain crossing. More accurate LiDAR survey along the alignment, Landholder consultation and extended historical stream-gauge records were all incorporated into this study.

The primary output of the Detailed Floodplain Study was to provide detailed mapping of the pre- and post-development flood extents, inundation durations, flow velocities and afflux predictions for the Mistake Creek system. A focus of this study is to assess the impacts that the proposed rail alignment would have on the landscape and surrounding properties.

5.1 Floodplain Location and Description

The Mistake Creek system has a catchment area of approximately 2739km² and is a significant portion of the Suttor Sub-Basin (18,000km²) in the Burdekin River Catchment. The terrain is predominantly very flat with significant low-land floodplains with grazing being the main land-use. The landscape is semi-arid with predominantly ephemeral streams (typically flow each year during the wet season between December and April).

A locality plan of the affected catchments that interface with the ACP railway is illustrated in Figure 1.

Calibre Alpha Coal Project – Rail Detailed Floodplain Study – Mistake Creek Document No:HC-CRL-24100-RPT-0137
CJVP10007-REP-C-015Revision No:Rev 0Issue Date:November 2011Page No:5

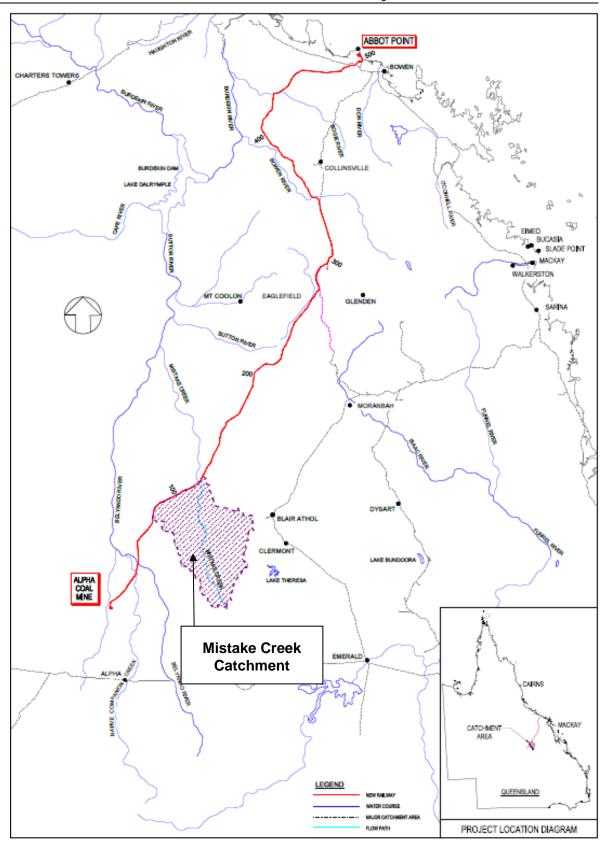


Figure 2: Catchment boundary and location

5.2 Mistake Creek

The catchment area for Mistake Creek at the proposed ACP rail alignment (Rail Chainage 117,855m) is approximately 2739km². The main low flow channel is poorly defined and braided. As such, in large flow events there is a complex interaction between channel and floodplain.

6.0 COMMUNITY CONSULTATION

As part of the Detailed Floodplain Study, community consultation was undertaken to correlate the current modelling to the historical knowledge of stakeholders in relation to individual floodplains. The feedback received has been incorporated into the modelling.

7.0 BANKABLE FEASIBILITY STUDY (BFS)

Prior to this detailed floodplain analysis, Calibre undertook a BFS level design of all drainage structures on the proposed ACP rail alignment, details of which are summarised in the BFS Drainage Engineering Report (CJVP10007-REP-C-001 / HC-CRL-24100-RPT-0022). The design proposed in the BFS report was used as the basis for the analysis detailed in this study.

7.1 Design Criteria

The drainage design criteria approved by HCPL for the BFS are specified in Tables 1 and 2.

Design Aspect	Design Criteria		
Culvert Classification	Major culverts: culvert locations with a 50 years ARI design flow \geq 50m ³ /sec.		
	Minor culverts: culvert locations with a 50 year ARI design flow $< 50 \mathrm{m}^3/\mathrm{sec.}$		
Design Flood	Minor culverts shall pass the 20 year ARI design event flow.		
	Major culverts shall pass the 50 year ARI design event flow.		
Freeboard	Min. 300mm to the formation surface for design event.		
Headwater	Max. headwater to be 1.5 x culvert diameter.		
Max. Outlet Velocity	5.0m/sec for design event with appropriate scour protection.		
Scour Protection	Capable of passing 20 years ARI design flood without damage. Rock sizing to be designed in accordance with AUSTROADS Waterway Design, 1994.		
Culvert Type & Size CSP (galvanised corrugated steel pipes).			
	CSP Culverts shall be provided with minimum 600mm earthwork cover.		
Min. diameter to be 900mm for engineering culverts.			
Diversion drains	Unlined diversion drains shall be used to divert catchment flows from one catchment to another, where culverts cannot be used through the rail formation. These should cater for the 20 year ARI design flood without overtopping or scour. Drain design should minimise drain scour for the design event.		

Table 1: General drainage design criteria

Document No: HC Revision No:

Issue Date: Page No: HC-CRL-24100-RPT-0137 CJVP10007-REP-C-015 Rev 0 November 2011 7

Design Aspect	Design Criteria
Cut off drains	Unlined cut off drains (with a minimum 20 year ARI design flow capacity) should be provided on the upstream side of the railway in cuttings to prevent surface water runoff entering the cuttings and causing scour and washouts.
Levees	Designed to ensure that there is 100mm freeboard above the culvert headwater design level.

Design Aspect	Design Criteria	
Design Flood	Bridges shall pass the 50 year ARI design event flow.	
Freeboard Min. 500mm to bridge soffit for 50 year ARI design flow.		
	Min. 300mm to TOF (embankments and guide banks) for 50 year ARI design flow.	
Max Velocity	3.8m/s to enable to adopt a practical limit of 1 tonne rock class protection for economy.	
Scour Protection	Provide rock protection to cater for 50 year ARI design flow velocities Rock sizing to be designed in accordance with AUSTROADS Waterway Design, 1994.	
Maximum backwater 1.5m with reduction at sensitive locations.		
Guide banks	To be designed in accordance with AUSTROADS Waterway Design, 1994.	

Table 2: Bridge hydraulic design criteria

7.2 Design Process

Hydrologic and hydraulic modelling was completed for all drainage structures along the ACP alignment during the BFS. For major crossings, design flows were estimated using either the rational method, a preliminary hydrologic model (CatchmentSim and RORB) or a Flood Frequency Analysis (FFA) where stream-gauge data were available. Design flows were then selected based on the best information available at the time of the study and what method was considered most appropriate for the level of analysis required for the BFS.

These flows were then hydraulically modelled depending upon the proposed structure type:

- Culverts were analysed using HY-8 (a 1-D modelling program design for culvert analysis) and sizes were determined to ensure afflux was less than 1.5m or the equivalent to the upstream bridge water levels determined from bridge modelling.
- Bridges were assessed using Afflux (a 1-D bridge hydraulic modelling program) to determine span widths that allowed less than 1.5m of afflux (as per the original design criteria). Supplementary culverts for the bridge were sized if the proposed bridge structure was not able to pass flows within the allowable afflux limits.

This level of analysis was sufficient for the purposes of the BFS and was used as a basis for the Detailed Floodplain Study.

8.0 FLOODPLAIN MODELLING DESIGN CRITERIA

A Supplementary Environmental Impact Statement (SEIS) was prepared after the conclusion of the BFS and this resulted in certain design criteria (from Tables 1 and 2) being modified to meet stakeholder requirements. Table 3 shows the modified drainage design criteria adopted for the Detailed Floodplain Modelling.

Design Aspect	Design Criteria		
Inundation Extent	Acceptable increases in inundation extent (above the existing conditions for a given return period to the 50 year ARI event) will be proposed where such an increase will not alter rural land use and result in significant impacts.		
Inundation Duration	Inundation duration not more than 3 days on valued pasture land that had previously been inundated for 3 days or less for similar rainfall events.		
Max Velocity	Bridge outlet velocity = maximum of $1.2 \times existing$ velocity at a distance equal to the bridge span downstream of bridge.		
	Culverts outlet velocity:		
	= 1.5m/s where erodible soils are present.		
	= 2.5m/s for normal soils (with no erosion control).		
Maximum afflux	Maximum 0.5m – normally (unless justifiable).		
	Maximum 0.2m – around critical infrastructure.		
	Maximum 0.1m – around dwellings.		

Table 3: SEIS Modified Drainage Design Criteria

Unless specified in Table 3, the design criteria used for the detailed floodplain analysis are identified in Tables 1 and 2.

9.0 DETAILED FLOODPLAIN ANALYSIS

9.1 Introduction

In order to assess the impacts that the proposed ACP rail alignment will have on the Mistake Creek systems, a detailed floodplain analysis was conducted. This detailed analysis was then used to assess the adequacy of the proposed cross-drainage structures determined from the BFS.

A detailed hydrologic analysis was completed for both systems and a combined hydraulic model that covers the area of interest within the floodplain, was developed. The modelling results were then used to assess impacts on inundation extents, time of inundation, afflux and velocities as a result of the ACP railway. From the results of the hydraulic modelling, detailed flood mapping has been produced.

The following sections outline the methodology used to derive the required outputs for the Detailed Floodplain study.

9.1.1 Hydrology

9.1.1.1 Previous Hydrology

During the BFS, the hydrology for Mistake Creek was based on RORB models and a Flood Frequency Analysis (FFA) of the Mistake Creek stream-gauge (120306A – Mistake Creek at Charlton). At the time of the analysis, the stream-gauge had 24 years of recorded data (daily streamflow readings from 1968 to 1993). The estimated 50 year ARI event flow was used for the sizing of the Mistake Creek cross-drainage structure.

It should be noted that the stream-gauge is located upstream of the ACP railway as shown in Figure 3 below.

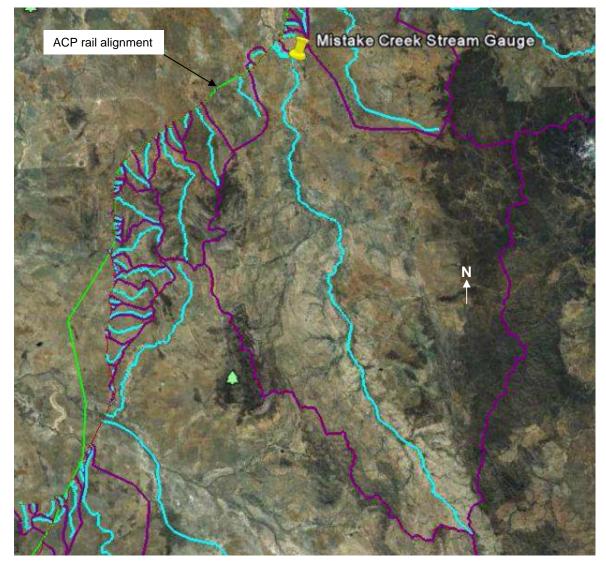


Figure 3: Mistake Creek Stream-gauge

For full details on the BFS analysis, refer to the BFS Drainage Engineering Report (CJVP10007-REP-C-001 / HC-CRL-24100-RPT-0022).

9.1.1.2 Additional Information

As a result of the additional flooding information that was obtained from Landholder consultation and a floodplain field investigation (undertaken by C&R consulting), a more holistic and representative modelling approach for the floodplain system was able to be generated.

This information contained more accurate details regarding the hydrologic parameters and existing system flooding behaviour. More accurate LiDAR survey along the rail corridor was also obtained for the detailed analysis. These data sets were all incorporated as additional design inputs.

The following additional data sets were made available for the Detailed Floodplain Study:

Additional Survey

Additional LiDAR survey was obtained along the proposed rail alignment in a 600m wide corridor with a vertical accuracy of ± 100 mm.

9.1.1.3 Flood Frequency Analysis

A Flood Frequency Analysis was completed for the Mistake Creek stream-gauge at Charlton based on the methods prescribed by Australian Rainfall and Runoff (AR&R). A summary of the data set obtained from the Department of Environment and Resource Management (DERM) online database is shown below in Table 4.

Table 4: Mistake Creek gauge data

Catchment	DERM stream-	Years of	Start - finish
	gauge	data	
Mistake Creek	120306A	24	16/05/1968 – 07/09/1993

The stream-gauge has a contributing catchment area of 2739km². An annual series based on water years (1 September to 30 August) was extracted from the daily data and analysed based on a Log-Pearson III probability distribution. The results are shown below in Figure 4.

The results of the FFA are presented in Appendix A.

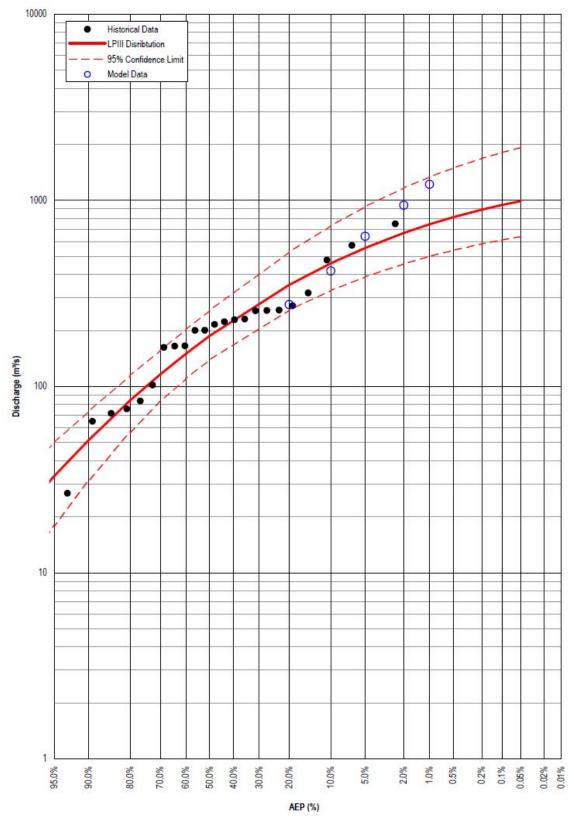


Figure 4: Mistake Creek stream-gauge FFA

From the FFA, the following design event flows have been derived and are shown below.

Event ARI (years)	Design discharge (m ³ /s)	Upper confidence limit discharge (m ³ /s)	Lower confidence limit discharge (m ³ /s)
100	744.6	1335.9	500.6
50	669.0	1167.0	456.4
20	555.9	925.3	388.4
10	459.3	730.3	328.0
5	351.7	527.7	257.4

 Table 5: Flood Frequency Analysis event analysis results

9.1.1.4 RORB Analysis

The contributing catchment area for Mistake Creek was delineated using the GIS based terrain analysis software, CatchmentSim. A visual check was performed against the BFS delineated catchment, stream-gauge catchment areas and SRTM contours to ensure the CatchmentSim delineation was accurate.

The system was delineated in CatchmentSim using the DERM SRTM survey data as this was deemed to have sufficient accuracy for the purposes of hydrologic analyses. The catchment was generated for the system and exported into the rainfall-runoff routing program, RORB.

A sub-catchment node was specifically placed at the location of the Mistake Creek streamgauge in order to calibrate the model.

A summary of the catchment analysis for Mistake Creek is shown below in Table 6.

Item	Value
Catchment area	2739km ²
d _{av}	60.62km

The RORB analysis results are contained in Appendix B.

Parameters

RORB model parameters were initially set to those recommended by AR&R for Queensland. These were then varied via a calibration exercise to achieve a best-fit for the particular catchment.

The initial parameters for the RORB model were set using the formulae outlined in AR&R guidelines for Queensland. These are shown below:

 $k_c = 0.88 \ A^{0.53}$ where A is the catchment area in square kilometres (Equation 9.1)

 $(k_c/d_{ave}) = -13.5 \text{ m}^3 + 45.8 \text{ m}^2 - 53 \text{ m} + 21.2$ (Equation 9.2) where d_{ave} is the average stream length from sub-catchment centroids to the catchment outlet The RORB manual suggests that the k_c parameter is better estimated using the following formula:

 $k_c = 2.2 \ (A^{0/5}) \ (Q_p/2)^{(0.8\text{-m})}$ where Q_p is the predicted peak discharge

(Equation 9.3)

Using the above formula (equation 9.2) as recommended by AR&R, initial catchment parameters for Mistake Creek were calculated and are shown in Table 7 along with an estimate of the initial and continuing loss in Table 8.

Table 7: Mistake Creek initial RORB parameters

Item	Value
k _c	58.4
m	0.847

Table 8: Initial and continuing loss estimation

Event ARI (years)	Initial loss (mm)	Continuing loss (mm/hr)
100	25	2.5
50	25	2.5
20	30	2.5
10	30	2.5
5	35	2.5

Calibration

As Mistake Creek has a stream-gauge upstream of the proposed ACP alignment, a hydrologic calibration was able to be performed. Using the RORB model generated for the system and the adopted initial parameters as described previous, initial loss and k_c values were adjusted to achieve a best-fit for the 5, 10, 20, 50 and 100 year ARI events at the gauging station node against the stream-gauge FFA. These calibrated values are shown below in Tables 9 and 10.

Table 9: Mistake Creek calibrated RORB parameters

Item	Value
k _c (calibrated)	150
m	0.847

Table 10: Mistake Creek calibrated losses

Event ARI (years)	Initial loss (mm)	Continuing loss (mm/hr)
100	25	2.5
50	25	2.5
20	30	2.5
10	30	2.5
5	35	2.5

An order-of-magnitude calibration was achieved for the 50 year ARI event (design event) with the FFA predicted a peak flow of $669m^3$ and the RORB model estimating $942m^3/s$.

Although not achieving an ideal calibration, the design storm peak discharge was overestimating the historical flow data which would in turn lead to a conservative design. A results comparison between the calibrated RORB model and the FFA estimates are shown below in Table 11.

Event ARI (years)	FFA estimate (m ³ /s)	RORB estimate (m ³ /s)
100	744.6	1219
50	669.0	942
20	555.9	642
10	459.3	418
5	351.7	276

The peak discharges extracted from the RORB model have been plotted (blue circles) on the FFA provided in Figure 4.

Results

The results extracted from the hydrologic modelling for Mistake Creek system at the ACP rail interface are shown below in Tables 12 and 13:

Table 12: Mistake Creek peak storm durations

Event ARI (years)	Peak discharge storm duration (hours)
100	72
50	72
5	36

Table 13: Mistake Creek predicted peak discharges

Event ARI (years)	Peak predicted discharge (m ³ /s)
100	1219
50	942
5	276

Full hydrographs have been extracted from the RORB model for the 5, 10, 20, 50 and 100 year ARI events are provided in Appendix B. The predicted peak discharges for the system was then used as inflows into the Mistake Creek floodplain hydraulic model as described in Section 9.1.2.

9.1.2 Hydraulic Modelling

It was identified that the Mistake Creek system had a complex floodplain interaction that occurred upstream of the proposed ACP rail alignment. In order to accurately assess this interaction, a full hydrodynamic 2-D model was generated using the software package MIKE Flood. The advantage of using MIKE Flood is the program's ability to model large grid-scale features such as complex floodplains while also allowing sub grid-scale features such as culverts and bridges to be modelled with a greater degree of accuracy.

The following section outlines the process used to generate the 2-D model, sensitivity analyses conducted and modelling results.

9.1.2.1 MIKE Flood Model

Bathymetry

The hydraulic model had a bathymetry of 459 x 605 cells at a grid cell size of 10m x 10m (model area of 28km²). The final bathymetry used for the pre- and post-development rail cases is shown below in Figure 5.

The bathymetry was generated from a combination of LiDAR sources (BFS LiDAR and current alignment LiDAR) and covers all of the area of interest around the proposed ACP railway. When combining the LiDAR data sets, the survey with the highest accuracy was used as a priority over the other data sets.

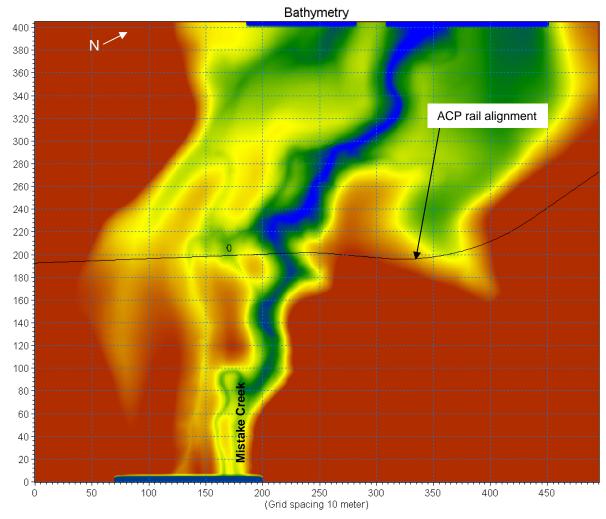


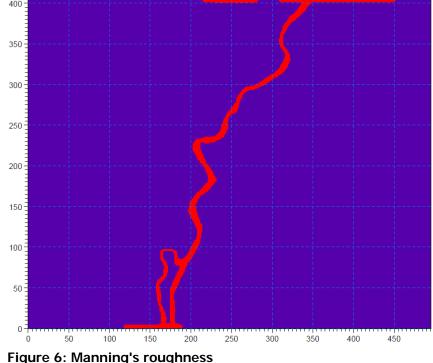
Figure 5: Hydraulic model extent

Boundary conditions

A Mistake Creek inflow hydrograph was input into the model over an appropriate width to ensure minimal dispersion of flows laterally during peak hydrograph inflows. The downstream boundary condition was set using a flow value for the system and a rating curve (discharge-height relationship) generated from the downstream cross section and average stream slope.

Initial water surface levels from the downstream boundary condition were projected back upstream to account for the loss of storage due to tailwater affects. The selection of downstream boundary levels was subject to sensitivity testing as outlined in Section 9.1.3.

Roughness coefficients


The Mistake Creek system has two distinct types of roughness: a relatively smooth and well defined flowpath for the main conveyance channels; and a rough, low velocity, low water depth floodplain. As such, two Manning's values were adopted for this Detailed Floodplain Study:

- Channel: n = 0.04
- Floodplain: n = 0.1

In an initial approach to easily and accurately define the two separate roughness areas, 5 year ARI event flows were halved and input into the hydraulic model (to simulate a bank-full stream event). Where depths exceeded 0.2m and velocities above approximately 0.15m/s, a roughness value attributed to a channel was assigned. The remaining model domain was set to a roughness equivalent to floodplain.

After Landholder feedback was received on several neighbouring floodplain systems it was identified that a more accurate representation of the two separate roughness areas was to assign a channel roughness to the main stream flowpath only (delineated by contour maps) and set a roughness value equivalent to a floodplan for the remaining model domain. The adopted values are shown in Figure 6. The selection of roughness values was subject to sensitivity testing as outlined in Section 9.1.3.

MIKE Flood coupling

The MIKE Flood modelling package allows for the input of 1-D modelling elements (MIKE11) within the 2-D model domain (MIKE21). These links are known as 'couples'. For this Detailed Floodplain Study, bridges and culverts have been input into the model as 1-D elements to accurately assess the headloss through cross-drainage structures. All structures have been modelled implicitly with standard MIKE11 variables. Coupled locations are shown in Figure 7.

In order to maintain inundation extents post-development and as specified in the SEIS, floodplain relief culverts are proposed for the Mistake Creek system at 50m spacing. These relief culverts consist of 900mm diameter Corrugated Steel Pipes (CSP). Through sensitivity testing it was determined that in order to minimise geometric grid-scale problems and minimising the required number of couples within the model, it was feasible to group 5 floodplain relief culverts from adjacent 2-D grid cells. This resulted in a grouping a 5/900mm CSP every 250m within the model.

Flows through the floodplain relief culverts in MIKE Flood were verified against a 1-D model of a single 900mm diameter CSP using the HY-8 modelling package.

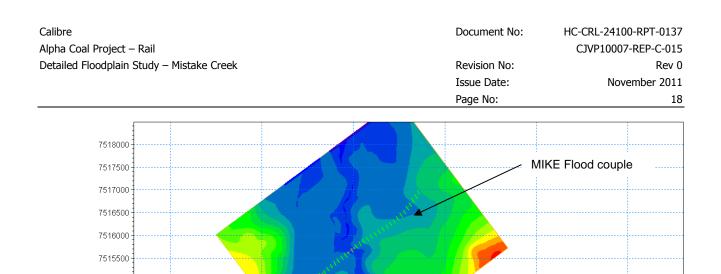


Figure 7: MIKE Flood couple locations

506000

In addition to the floodplain relief culverts, the BFS proposed a single bridge span of 100m for Mistake Creek. This was also inserted as a couple into the MIKE Flood model.

510000

512000

514000

508000

9.1.3 Sensitivity Testing

504000

7515000 · 7514500 · 7514000 · 7513500 ·

Due to the lack of anecdotal evidence available to calibrate the hydraulic model, a sensitivity range of \pm 30% on roughness values, inflow hydrographs and downstream boundary water levels was tested. Sensitivity testing was undertaken for the 50 year ARI event and for the pre-development case only at locations shown in Figure 8.

Document No:HC-CRL-24100-RPT-0137
CJVP10007-REP-C-015Revision No:Rev 0Issue Date:November 2011Page No:19

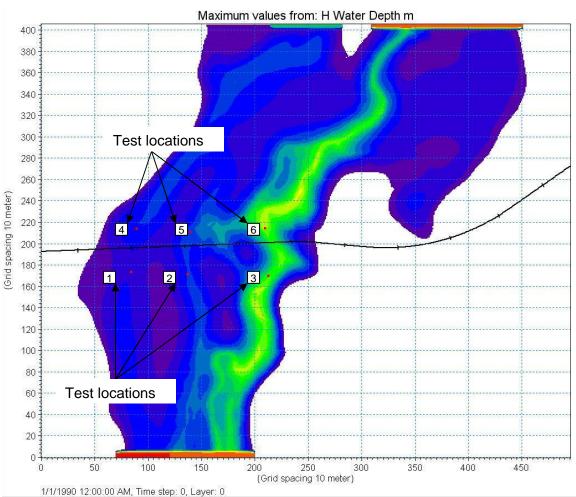


Figure 8: Sensitivity testing locations

Six locations were selected both upstream and downstream of the proposed railway alignment and included main channel and floodplain locations in order to assess the sensitivity of certain parameters on the predicted water levels and velocities.

Manning's values

The value of Manning's 'M' (M=1/n) was adjusted by $\pm 30\%$ to assess the impacts of this parameter on the predicted maximum inundation depths and velocities at the locations shown in Figure 8. The sensitivity of the Manning's 'M' value is shown in Table 14.

Location	Adopted value (m)	+ 30% value	Change (m)	-30% value	Change (m)
1	0.695	1.016	0.321	0.545	-0.150
2	1.242	1.598	0.356	1.034	-0.208
3	3.344	3.690	0.346	3.124	-0.220
4	1.170	1.573	0.403	0.922	-0.248
5	1.483	1.864	0.381	1.246	-0.237
6	4.162	4.503	0.341	3.949	-0.213

Table 14: Manning's 'M' value sensitivity (depth)

Calibre	Document No:	HC-CRL-24100-RPT-0137
Alpha Coal Project – Rail		CJVP10007-REP-C-015
Detailed Floodplain Study – Mistake Creek	Revision No:	Rev 0
	Issue Date:	November 2011
	Page No:	20

The Manning's value has an impact ranging from -250mm to +410mm on the predicted water surface level. This has an equivalent inundation extent impact of -5.0% and +4.6%, which is a relatively minor impact on the predicted extents.

At the same testing locations, the peak velocities were also extracted. From Table 15, it can be seen that there is an equivalent change in velocity as per the change in Manning's percentage. However the flow velocity change is small and remains in the same order of magnitude as the adopted existing case.

Location	Adopted value (m/s)	+30% value	Change (%)	-30% value	Change (%)
1	0.288	0.225	-21.9	0.331	14.9
2	0.384	0.297	-22.7	0.458	19.3
3	1.385	1.071	-22.7	1.633	17.9
4	0.164	0.145	-11.6	0.181	10.4
5	0.208	0.191	-8.2	0.223	7.2
6	0.805	0.669	-16.9	0.915	13.7

Table 15: Manning's 'M' value sensitivity (velocity)

Inflow hydrographs

The inflow values were adjusted by $\pm 30\%$ to assess the impacts of this parameter on the predicted maximum inundation depths at the locations shown in Table 16.

Location	Adopted value (m)	+30% value	Change (m)	-30% value	Change (m)
1	0.695	0.943	0.248	0.469	-0.226
2	1.242	1.520	0.278	0.936	-0.306
3	3.344	3.610	0.266	3.019	-0.325
4	1.170	1.491	0.321	0.786	-0.384
5	1.483	1.785	0.302	1.123	-0.360
6	4.162	4.433	0.271	3.839	-0.323

Table 16: Inflow hydrograph sensitivity

The inflow values have an impact ranging from -330mm to +390mm on the predicted water surface level. This has an equivalent inundation extent impact of -8.5% and +3.6%, which is a relatively minor impact on the predicted extents.

Downstream boundary

The downstream boundary water surface levels were adjusted by $\pm 30\%$ to assess the impacts of this parameter on the predicted maximum inundation depths at the locations shown in Table 17.

Document No:HC-CRL-24100-RPT-0137
CJVP10007-REP-C-015Revision No:Rev 0Issue Date:November 2011Page No:21

Location	Adopted value (m)	+30% value	Change (m)	-30% value	Change (m)
1	0.695	0.695	0.000	0.695	-0.000
2	1.242	1.242	0.000	1.242	-0.000
3	3.344	3.345	0.001	3.344	-0.000
4	1.170	1.171	0.001	1.170	-0.000
5	1.483	1.483	0.000	1.482	-0.001
6	4.162	4.163	0.001	4.162	-0.000

 Table 17: Downstream boundary sensitivity

The downstream boundary level has a negligible impact on the predicted water surface level.

The sensitivity analysis has shown that the magnitude of the hydraulic model inflows has the most significant impact on the predicted water surface levels within the 2-D model. Although the relative change in level is high when compared to the predicted water depth, the change in inundation extent is minimal.

Conservative values for all variables have been adopted as part of this study. It is considered that the outcomes of the study are adequate without hydraulic model calibration and are conservative in nature.

9.2 Floodplain Drainage Structure Recommendations

As discussed in previous sections, with the additional data received and incorporated as part of the Detailed Floodplain Study, additional analysis was required on the proposed BFS cross-drainage infrastructure in order to demonstrate that the impacts of the proposed ACP rail alignment could be mitigated to levels that comply with the EIS and SEIS.

At the time of completion of this Detailed Floodplain Study, a significant increase in crossdrainage infrastructure was required in order to minimise the impact of the proposed ACP rail alignment on the floodplain system.

The following additional cross-drainage structures are proposed to meet the EIS, SEIS and stakeholder requirements for the system. For Mistake Creek, the following additional cross-drainage infrastructure is recommended in order to minimise the impacts of the railway:

- 23/ 1200mm diameter CSPs on the southern side of the floodplain;
- 40/ 1200mm diameter CSPs on the central branch of the floodplain;
- 20/1800mm and 10/1200mm diameter CSPs on the northern side of the floodplain;
- 41/ 2700mm diameter supplementary CSPs on the main branch of Mistake Creek.

The approximate locations for the proposed cross-drainage infrastructure are shown below in Figure 9.

Document No:HC-CRL-24100-RPT-0137
CJVP10007-REP-C-015Revision No:Rev 0Issue Date:November 2011Page No:22

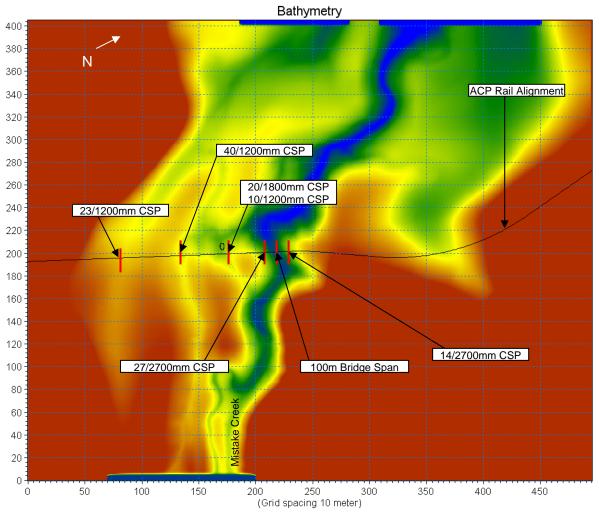


Figure 9: Drainage structure locations and total quantities

9.3 Results

Following the collation of information received from Landholders during the consultation process, the findings from this Detailed Floodplain Study have been presented to specific Landowners who have an interest in and/or are influenced by the proposed Alpha Coal rail alignment and its impact on the Mistake Creek system.

Feedback from Landholders through continued consultation has shown the predevelopment flood modelling correlates well with what has been observed on-site during major flood events. The post-development models utilise the same hydrologic parameters and same hydraulic modelling methods as the pre-development models to ensure consistency. Preliminary drainage structures have been modelled in the post-development case to conform to the SEIS requirements. Peak floodplain inundation depths, water surface elevations, velocities and inundation extents have all been plotted and are shown in Appendix C. Drawings include:

- Inundation extents:
 - 5, 50 and 100 year ARI events pre- and post-development.
- Inundation depths:
 - 50 year ARI event post-development.
- Water surface elevations:
 - 50 year ARI event post-development.
- Velocity profiles:
 - 50 year ARI event post-development.
- Afflux:
 - 50 year ARI event.

A summary of the findings from the Detailed Floodplain Study compared to the SEIS drainage criteria is shown in Table 18.

Design Aspect	SEIS Design Criteria	Result Summary	
Inundation	Acceptable increases in inundation	Conforms to SEIS requirements.	
Extent	extent (above the existing conditions for a given return period to the 50 year ARI event) will be proposed where such an increase will not alter rural land use and result in significant impacts.	There is an overall increase of 0.01% in inundation extent of the modelled area during the design flood event.	
Inundation Duration	Inundation duration not more than 3 days on valued pasture land that had previously been inundated for 3 days or less for similar rainfall events.	Conforms to SEIS requirements.	
Max Velocity	Bridge outlet velocity = maximum of 1.2 x existing velocity at a distance equal to the bridge span downstream of bridge.	Conforms to SEIS requirements. Refer Velocity drawing in Appendix C for details.	
	Culverts outlet velocity:		
	= 1.5m/s where erodible soils are present.		
	= 2.5m/s for normal soils (with no erosion control).		
Maximum afflux	Maximum 0.5m – normally (unless justifiable).	Conforms to SEIS requirements.	
	Maximum 0.2m – around critical infrastructure.	Refer Afflux drawing in Appendix C for details.	
	Maximum 0.1m – around dwellings.		

Table 18: Results Summary

Further to the above table, results show that there is a minimal change in overall inundation extents due to the current alignment and proposed floodplain drainage structures. This is shown below in Table 19.

Table 19: Change in inundation extents

Event ARI (years)	% change in "wet" cells	Change in area (ha)
5	1.88	4.37
50	0.01	0.26

With the inclusion of additional cross-drainage structures, the proposed ACP rail alignment will meet the afflux limits specified in the SEIS. Afflux and velocity results for the nominated design criteria post-development meet the requirements of the SEIS and stakeholder requirements. Results are shown in Appendix C.

Inundation Duration

One of the primary concerns of Landholders from the EIS and during the consultation process is related to the change in duration of inundation due to the development of the Alpha Coal rail alignment.

Detailed 2-D modelling with time-step analysis on areas of interest reports that inundation duration has been maintained across the floodplain to the requirements of the SEIS i.e; inundation duration of not more than 3 days on valued pasture land that had previously been inundated for 3 days or less for similar rainfall events.

It should be noted that the predicted impacts from the proposed railway extend up to the upstream model boundary and as such, the current model cannot be used to demonstrate the entire impacted area. An attempt was made to match the SRTM surface to the LiDAR however large irregularities between adjacent SRTM tiles meant that the area around Mistake Creek was unusable. In order to undertake further modelling, additional detailed survey data would be required further upstream from the proposed railway alignment. However, the maximum relative impact is 20mm at the upstream boundary during the design event. As this level is below the threshold for impacts under the SEIS conditions, the model extent is considered adequate for the purposes of this Detailed Floodplain Study.

10.0 CONCLUSION

Detailed hydrologic and hydraulic modelling has been completed for Mistake Creek at the proposed ACP rail alignment. It has been shown that the proposed railway can mitigate its hydraulic impacts to meet the limits placed on the project by the SEIS. The recommended cross-drainage structures for Mistake Creek are shown in Tables 20 and 21. Alternative drainage structures may be utilised providing equivalent hydraulic performance is maintained or improved.

Table 20: Mistake Creek

Item	Value
	1/ 100m bridge span.
Proposed cross-drainage infrastructure	73/ 1200mm diameter supplementary CSPs.
Proposed cross-drainage initiastructure	20/ 1800mm diameter supplementary CSPs.
	41/ 2700mm diameter supplementary CSPs.

Table 21: Floodplain relief culverts

Item	Value
Proposed cross-drainage infrastructure	900mm diameter CSPs at 50m in the floodplain

The findings can be further optimised when further hydraulic analysis is undertaken during the Detailed Design phase of the project.

Calibre	Document No:	HC-CRL-24100-RPT-0137
Alpha Coal Project – Rail		CJVP10007-REP-C-015
Detailed Floodplain Study – Mistake Creek	Revision No:	Rev 0
	Issue Date:	November 2011
	Page No:	26

APPENDIX A FFA ANALYSIS

Client:	Hancock coal		Date:	17/8/2011
Project/Job:	ACP	Job No:	Sheet No:	
Subject:	FFA Mistake Creek		By:	ARB

1.110		_
	CAL	DATA
	197418	DATA

Sample Period (Years)	24	
Number of Samples to Use, N	24	
Plotting Position Parameter, $lpha$	0.4	

Adjusted Mean, M	2.221
Adjusted Std Deviation, S	0.380
Coefficient of Skewness, g	-0.827

 $\sum Log(Q)^{3}$

23.738

44.729 63.979 79.667 94.099

108.108

122.083 136.026

149.213

162.338

175.283

187.989

200.194

212.385

234.200

244.996

253.097

266.847 273.244

279.208 282.115

284.175

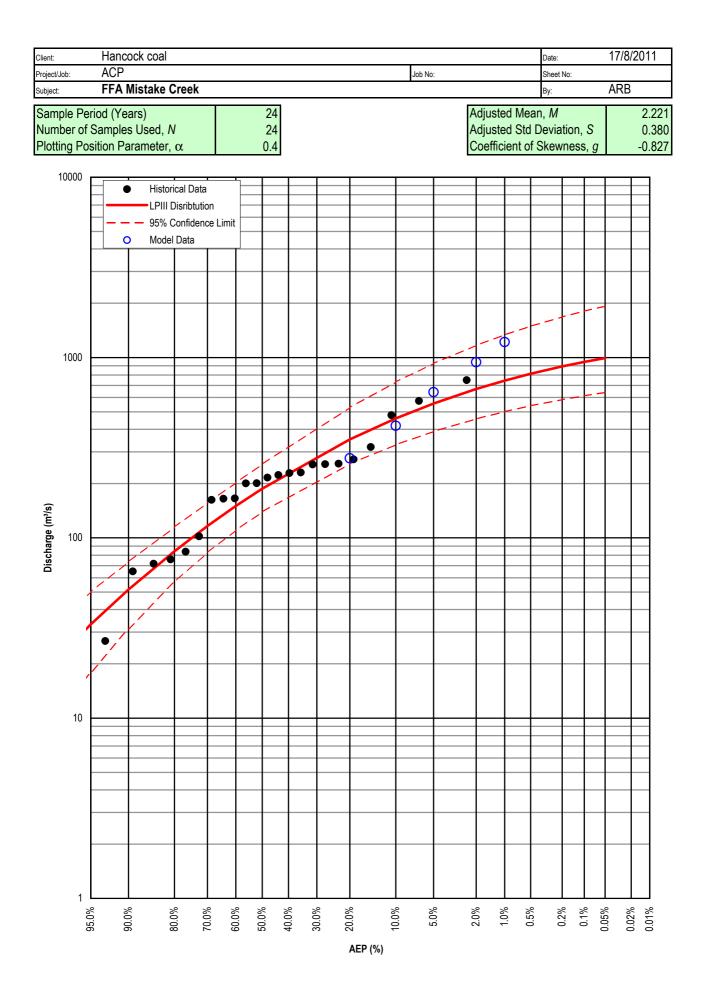
Rank	Discharge	P _N	Υ _P	Plotting		
	(m³/s)	AEP	ARI	Position	$\sum Log(Q)$	$\sum Log(Q)^2$
1	748.09	2.5%	40.33	1.964	2.874	8.260
2	573.52	6.6%	15.13	1.505	5.633	15.869
3	478.68	10.7%	9.31	1.240	8.313	23.052
4	318.69	14.9%	6.72	1.042	10.816	29.319
5	272.07	19.0%	5.26	0.878	13.251	35.246
6	257.41	23.1%	4.32	0.734	15.661	41.057
7	256.3	27.3%	3.67	0.605	18.070	46.860
8	255.19	31.4%	3.18	0.484	20.477	52.653
9	230.43	35.5%	2.81	0.371	22.839	58.234
10	228.48	39.7%	2.52	0.262	25.198	63.798
11	222.85	43.8%	2.28	0.156	27.546	69.311
12	215.52	47.9%	2.09	0.052	29.880	74.757
13	200.61	52.1%	1.92	-0.052	32.182	80.057
14	200.22	56.2%	1.78	-0.156	34.484	85.354
15	165.43	60.3%	1.66	-0.262	36.702	90.277
16	164.78	64.5%	1.55	-0.371	38.919	95.191
17	162.23	68.6%	1.46	-0.484	41.129	100.076
18	101.95	72.7%	1.38	-0.605	43.138	104.110
19	83.65	76.9%	1.30	-0.734	45.060	107.805
20	75.86	81.0%	1.23	-0.878	46.940	111.340
21	71.83	85.1%	1.17	-1.042	48.796	114.786
22	65.09	89.3%	1.12	-1.240	50.610	118.075
23	26.74	93.4%	1.07	-1.505	52.037	120.111
24	18.72	97.5%	1.03	-1.964	53.309	121.730

Client:	Hancock coal			Date:	17/8/2011
Project/Job:	ACP	Job	No:	Sheet No:	
Subject:	FFA Mistake Creek			By:	ARB

LOG-PEARSON III DISTRIBUTION

Grio	lline	Data	

			Grianito Bata		
				Min	Max
Mean Override, M	2.221	2.221	Discharge (r	1	10000
Std Deviation Override, S	0.38	0.380	AEP	0.95	0.0001
Skewness Override, g	-0.827	-0.827		-1.645	3.719

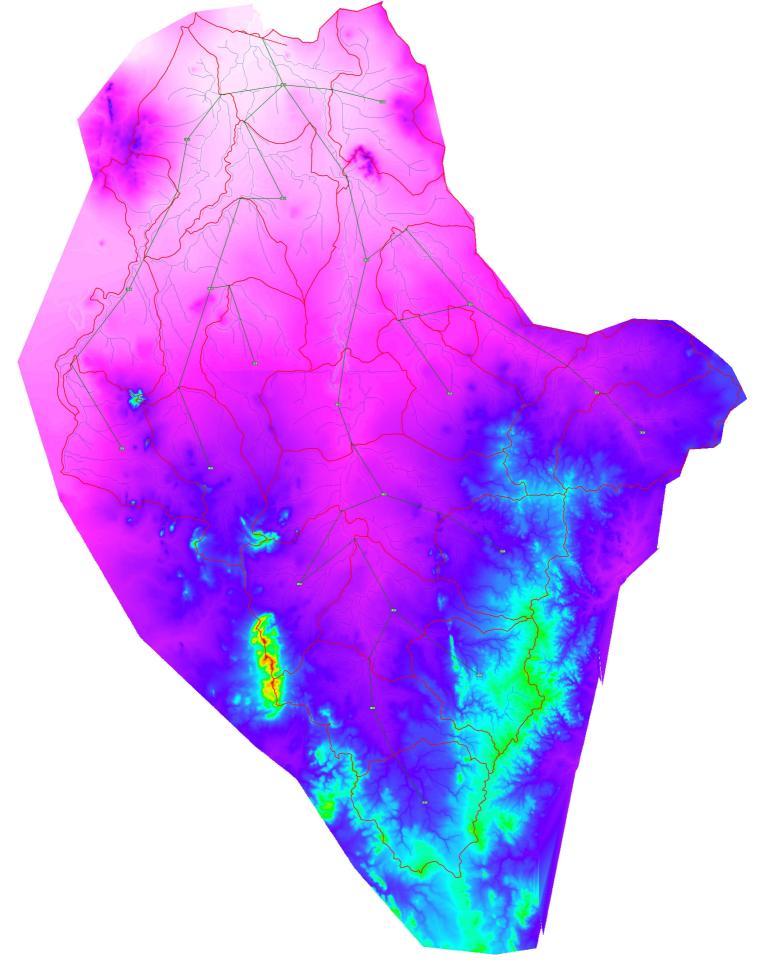

Υ _P	P _N	LPIII	LPIII Confide		Plotting	Frequency
ARI	AEP	Discharge	Lower	Upper	Position	Factor
2000	0.05%	991.9	639.3	1923.9	3.291	2.041
1000	0.1%	944.7	613.4	1807.6	3.090	1.985
500	0.2%	891.9	584.1	1679.8	2.878	1.919
200	0.5%	812.6	539.5	1492.3	2.576	1.813
100	1.0%	744.6	500.6	1335.9	2.326	1.713
50	2.0%	669.0	456.4	1167.0	2.054	1.591
20	5.0%	555.9	388.4	925.3	1.645	1.379
10	10.0%	459.3	328.0	730.3	1.282	1.161
5	20.0%	351.7	257.4	527.7	0.842	0.856
2	50.0%	187.4	139.3	256.0	0.000	0.136
1.667	60.0%	150.1	110.0	202.1	-0.253	-0.117
1.429	70.0%	116.3	82.9	156.1	-0.524	-0.409
1.250	80.0%	84.3	56.9	114.6	-0.842	-0.777
1.111	90.0%	51.6	31.3	73.6	-1.282	-1.337
1.053	95.0%	33.1	17.9	50.1	-1.645	-1.845
1.010	99.0%	13.0	5.4	22.9	-2.326	-2.909

HYDROLOGIC MODEL DATA

ARI	AEP	Discharge
		Discharge
2000	0.0005	
1000	0.001	
500	0.002	
200	0.005	
100	0.01	1219
50	0.02	942
20	0.05	642
10	0.1	418
5	0.2	276
2	0.5	

m=1.1, IL=10, CL=2

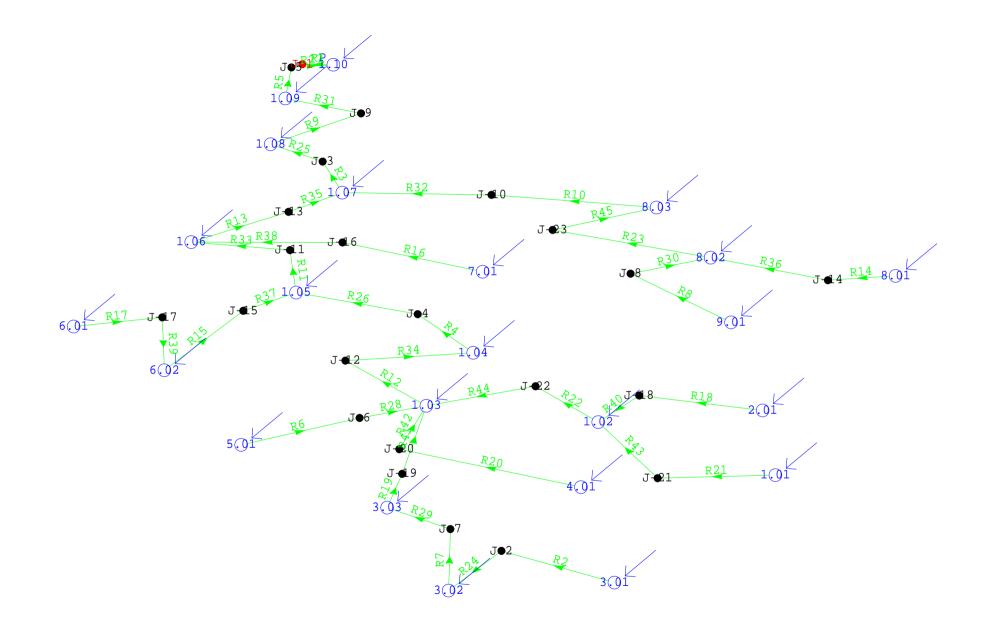
1437
1224
975
771
618
382



1 # 0. # # # 99.999% # # # # 0. # # # 99.995% # # # # 0. # # # 99.99% # # # # 0. # # # 99.98% # # # # 0. # # # 99.95% # # # # 0. # # # 99.9% # # # # 0. # # # 99.8% # # # # 0. # # # 99.5% # # # # 1.1 # # # 99.0% # # # # 2.1 # # # 98.0% # # # # 5.1 # # # 95.0% # # # # 1C # # # 90.0% # # # # 20 # # # 80.0% # # # # 3C # # # 70.0% # # # # 4C # # # 60.0% # # # # 50 # # # #

Calibre	Document No:	HC-CRL-24100-RPT-0137
Alpha Coal Project – Rail		CJVP10007-REP-C-015
Detailed Floodplain Study – Mistake Creek	Revision No:	Rev 0
	Issue Date:	November 2011
	Page No:	27

APPENDIX B RORB RESULTS


Kc and m parameters - Mistake Creek Stream Gauge

Mistake Creek ARR Book 5 Catchment area d _{av}	2739 60.62	
K _c (Weeks, QLD)	58.40	· · · · · · · · · · · · · · · · · · ·
		_
adjusted K_{c}	58.4	
m	0.846986	for 0.6 <m<1.2< th=""></m<1.2<>
LHS 0.963378423		seek to LHS by changing m)
RORB manual K _c	Iteration1 83.43187	
Q _p	1000	m³/s

0.85183

 m_1

Mistake Creek RORB

mistake creek_72h50y RORBWin Output File Program version 6.15 (last updated 30th March 2010) Copyright Monash University and Sinclair Knight Merz Date run: 08 Oct 2011 14:23 Vector file : S:\PRO-Projects\2011\CARP11064 HCPL Alpha FEED\06 Engineering\6.4 Hydrology\Mistake Creek\RORB\Mistake Creek.catg Storm file : S:\PRO-Projects\2011\CARP11064 HCPL Alpha FEED\06 Engineering\6.4 Hydrology\Mistake Creek\RORB\Mistake Creek_72h50y.stm Output information: Flows & all input data Data checks: ***** Next data to be read & checked: Catchment name & reach type flag Control vector & storage data Code no. 61 7.0 Location read as Subcatchment: 1.10 Sub-area areas Impervious flag Initial storm data Rainfall burst times Pluviograph 1 Sub-area rainfalls Data check completed Data: **** Mistake Creek Time data, in increments from initial time Mistake Creek: 72 hour 50 year Design Storm Time increment (hours)= 4.00 Finish Start Rainfall times: 0 18 End of hyeto/hydrographs: 18 Duration of calculations: 100 Pluviograph data (time in incs, rainfall in mm, in increment following time shown) 1:Temporal pattern (% of depth Time 1 25.8 0 4.7 1 2 3 0.7 4 1.3 5 2.6 6 12.0 7 17.0 8 6.0 9 3.1 10 1.0

mistake creek_72h50y

Total 100.0

DESIGN run control vector

Step	Code	Description
1	1	Add sub-area 'A' inflow & route thru normal storage 1
23	5 2	Route hydrograph thru normal storage 2 Add sub-area 'B' inflow & route thru normal storage 3
3 4	5	Route hydrograph thru normal storage 4
5 6	2 5	Add sub-area 'C' inflow & route thru normal storage 5 Route hydrograph thru normal storage 6
7	3	Store hydrograph from step 6; reset hydrograph to zero
8	1	Add sub-area 'D' inflow & route thru normal storage 7
9 10	5 3	Route hydrograph thru normal storage 8 Store hydrograph from step 9; reset hydrograph to zero
11	1	Add sub-area 'E' inflow & route thru normal storage 9
12	5	Route hydrograph thru normal storage 10
13 14	4 2	Add h-graph ex step 10 to h-graph ex step 12 Add sub-area 'F' inflow & route thru normal storage 11
15	5	Route hydrograph thru normal storage 12
16 17	4 3	Add h-graph ex step 7 to h-graph ex step 15
18	5 1	Store hydrograph from step 16; reset hydrograph to zero Add sub-area 'G' inflow & route thru normal storage 13
19	5	Route hydrograph thru normal storage 14
20 21	4 3	Add h-graph ex step 17 to h-graph ex step 19 Store hydrograph from step 20; reset hydrograph to zero
22	1	Add sub-area 'H' inflow & route thru normal storage 15
23	5	Route hydrograph thru normal storage 16
24 25	4 2	Add h-graph ex step 21 to h-graph ex step 23 Add sub-area 'I' inflow & route thru normal storage 17
26	5	Route hydrograph thru normal storage 18
27	2	Add sub-area 'J' inflow & route thru normal storage 19
28 29	5 3	Route hydrograph thru normal storage 20 Store hydrograph from step 28; reset hydrograph to zero
30	1	Add sub-area 'K' inflow & route thru normal storage 21
31	5	Route hydrograph thru normal storage 22
32 33	2 5	Add sub-area 'L' inflow & route thru normal storage 23 Route hydrograph thru normal storage 24
34	4	Add h-graph ex step 29 to h-graph ex step 33
35 36	2 5	Add sub-area 'M' inflow & route thru normal storage 25 Route hydrograph thru normal storage 26
37	3	Store hydrograph from step 36; reset hydrograph to zero
38	1	Add sub-area 'N' inflow & route thru normal storage 27
39 40	5 4	Route hydrograph thru normal storage 28 Add h-graph ex step 37 to h-graph ex step 39
41	2	Add sub-area 'O' inflow & route thru normal storage 29
42	5	Route hydrograph thru normal storage 30
43 44	3 1	Store hydrograph from step 42; reset hydrograph to zero Add sub-area 'P' inflow & route thru normal storage 31
45	5	Route hydrograph thru normal storage 32
46	3 1	Store hýdrograph from step 45; réset hydrograph to zero Add sub-area 'Q' inflow & route thru normal storage 33
47 48	1 5	Route hydrograph thru normal storage 34
49	4	Add h-graph ex step 46 to h-graph ex step 48
50	2 5	Add sub-area 'R' inflow & route thru normal storage 35
51 52	2	Route hydrograph thru normal storage 36 Add sub-area 'S' inflow & route thru normal storage 37
52	-	Page 2
		5

		mistake creek_72h50y	
53	5	Route hydrograph thru normal storage 38	
54	4	Add h-graph ex step 43 to h-graph ex step 53	
55	2	Add sub-area 'T' inflow & route thru normal storage	39
56	5	Route hydrograph thru normal storage 40	
57	2	Add sub-area 'U' inflow & route thru normal storage	41
58	5	Route hydrograph thru normal storage 42	
59	2	Add sub-area 'V' inflow & route thru normal storage	43
60	5	Route hydrograph thru normal storage 44	
61	7.0	Print hydrograph, Subcatchment: 1.10	
62	2	Add sub-area 'W' inflow & route thru normal storage	45
63	0	**************************************	

Sub-area data

Sub-ai	rea uata	
Sub- area BCDEFGHIJKLMNOPQRSTUVW	Area km ² 1.91E+02 1.36E+02 1.02E+02 1.00E+02 1.00E+02 1.37E+02 1.01E+02 1.71E+02 1.71E+02 1.02E+02 1.06E+02 1.18E+02 1.18E+02 1.18E+02 1.28E+02 1.28E+02 1.24E+02 1.24E+02 1.24E+02 1.25E+02 1.22E+01	Dist. km* 1.09E+02 9.39E+01 8.60E+01 9.86E+01 1.03E+02 8.51E+01 9.28E+01 9.76E+01 7.11E+01 5.58E+01 4.24E+01 4.24E+01 3.12E+01 5.48E+01 4.12E+01 3.19E+01 2.39E+01 1.57E+01 6.00E+00 2.44E-01

Total 2.740E+03

For whole catchment	; Av. Dist., km* =	60.62	
For interstation area	1; Av. Dist., km* =	60.62; ISA Factor =	1.000

* or other function of reach properties related to travel time

Normal storage data

Storage no.	Length km*	Rel. delay time	Туре	Slope percent
1	12.4	0.204	Natural	percent
2 3	2.9	0.047	Natural	
	2.9	0.047	Natural	
4	5.0	0.082	Natural	
5	5.0	0.082	Natural	
6	10.0	0.165	Natural	
7	9.5	0.156	Natural	
8 9	4.0	0.067	Natural	
	13.4	0.220	Natural	
10	4.0	0.067	Natural	
11	4.0	0.067	Natural	
12	10.0	0.165	Natural	
13	11.8	0.194	Natural	
			Page 3	

14 15		10.0 16.5		165 272	mist		cree ural ural	k_72	h50y	,				
16 17		10.0	0.	165 165		Nat Nat	ural ural							
18 19 20		5.3 5.3 8.1	0.	087 087 133		Nat	ural ural ural							
21 22		8.1 2.6	0. 0.	133 043		Nat Nat	ural ural							
23 24 25		2.6 8.1 8.1	0.	043 133 133		Nat	ural ural ural							
26 27		3.2 11.4	0. 0.	053 188		Nat	ural ural							
28 29 30		3.2 3.2 4.1	0.	053 053 067		Nat	ural ural ural							
31 32		14.0 5.4	0. 0.	230 089		Nat	ural ural							
33 34 35		8.2 5.4 5.4	0.	136 089 089		Nat	ural ural ural							
36 37 38		3.9 3.9 4.1	0.	064 064 067		Nat	ural ural							
30 39 40		4.1 4.2 4.2	0.	067 067 069		Nat	ural ural ural							
41 42 43		4.2 5.5 5.5	0.	069 091 091		Nat	ural ural							
43 44 45		0.2	0.	004 004 004		Nat	ural ural ural							
* or	other	functio	n of r	each	prop	erti	es r	elat	ed t	o tr	avel	tim	e	
		arameter:												
Mist		reek	* *											
DESI Mist	GN Run ake Ci	reek: 72 ment = 4			ear D	esig	n St	orm						
Cons	tant lo	oss mode	l sele	cted										
							_							
Rain Time		nm, in t	ime in Sub- Area	c.fo	ollow	ing	time	sho	wn					
Incs P	ment		A B	С	D	Е	F	G	Н	I	J	К	L	
0 70	69.9		70 70	70	70	70	70	70	70	70	70	70	70	
70 1 13	12.7		13 13	13	13	13	13	13	13	13	13	13	13	
2 5	4.6		55	5	5	5	5	5	5	5	5	5	5	
2	1.9		2 2	2	2	2	2	2	2	2	2	2	2	
4	3.5		4 4	4	4 7	4	4	4	4	4	4	4	4	
4 5	70		7 7				/							
4 5 7 6	7.0 32.5		77 7 3333	7 33	33	7 33	7 33	7 33	7 33	7 33	7 33	7 33	7 33	

M N O

70 70 7013 13 13

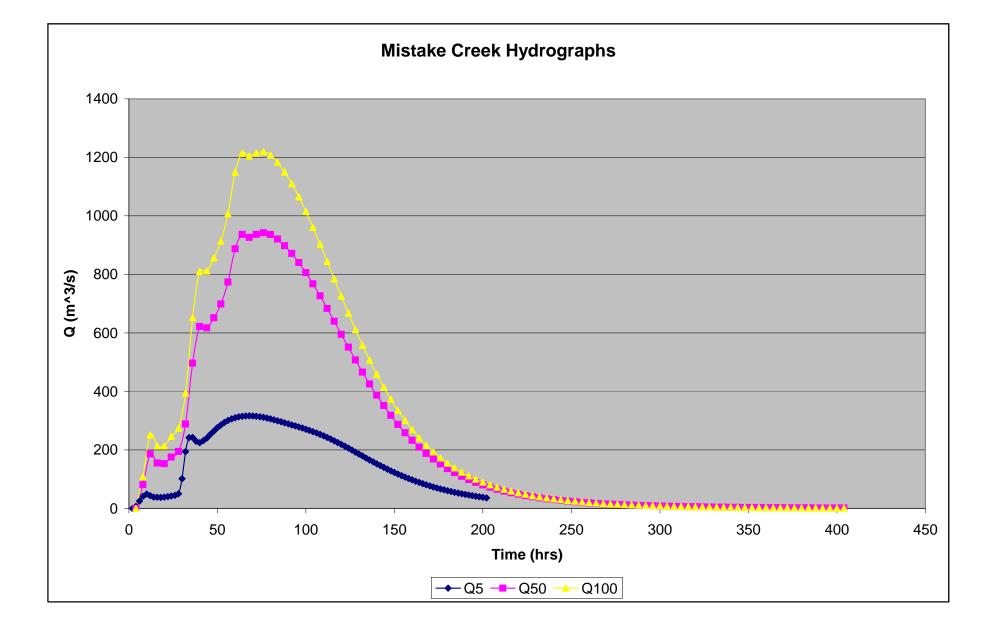
5 5 5

7	46.1		46	46	46	mist 46	take 46	cree 46	ek_72 46	2h50y 46	4 6	46	46	46	46	46	46
46 8	16.3		16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
16 9	8.4		8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
8 10 3	2.7		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
11	5.7		6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6 12 20	20.3		20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
13 25	25.5		25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
14 10	10.3		10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
15 1	1.4		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
16 1	1.4		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
17 1	0.8		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	271.0		271	271	271	271	271	271	271	271	271	271	271	271	271	271	271
271			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Pluv 1	i. ref.	no.	1	-	-	-	Ŧ	Ŧ	Ŧ	Т	-	-	-	-	-		
1 Time		no.	Si	ub- rea		т	U	v	w	Ť	Ť	-	-	-	-		
1 Time	Catch	no.	Sı	ıb-	s 70 13 5 2 4 7 33 46 16 8 3 60 255 10 1 1						_		-				
1 Time Incs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Tot.	Catch ment 69.9 12.7 4.6 1.9 3.5 7.0 32.5 46.1 16.3 8.4 2.7 5.7 20.3 25.5 10.3 1.4 1.4		Si A Q 70 13 5 2 4 7 33 46 16 8 3 6 20 25 10 1 1	ub- rea R 70 13 5 2 4 7 33 46 16 8 36 20 25 10 1 1 1 271	S 70 13 5 2 4 7 33 46 16 8 3 6 20 25 10 1 1	T 70 13 5 2 4 7 33 46 16 8 3 6 20 25 10 1 1	U 70 13 5 2 4 7 33 46 16 8 3 6 20 25 10 1 1	V 70 13 5 2 4 7 33 46 16 8 3 6 20 25 10 1 1	W 70 13 5 2 4 7 33 46 16 8 3 6 20 25 10 1 1								

	ain ime	fall-excess,		in t b-	ime	inc.	fol	lowi	ng t	ime	show	n					
		Catch	Ar	ea													
I	ncs	ment	Α	В	С	D	Е	F	G	Н	I	J	К	L	М	Ν	0
Ρ																	
25	0	34.9	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
35	1	2.7	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
3	2	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
							P	age	5								

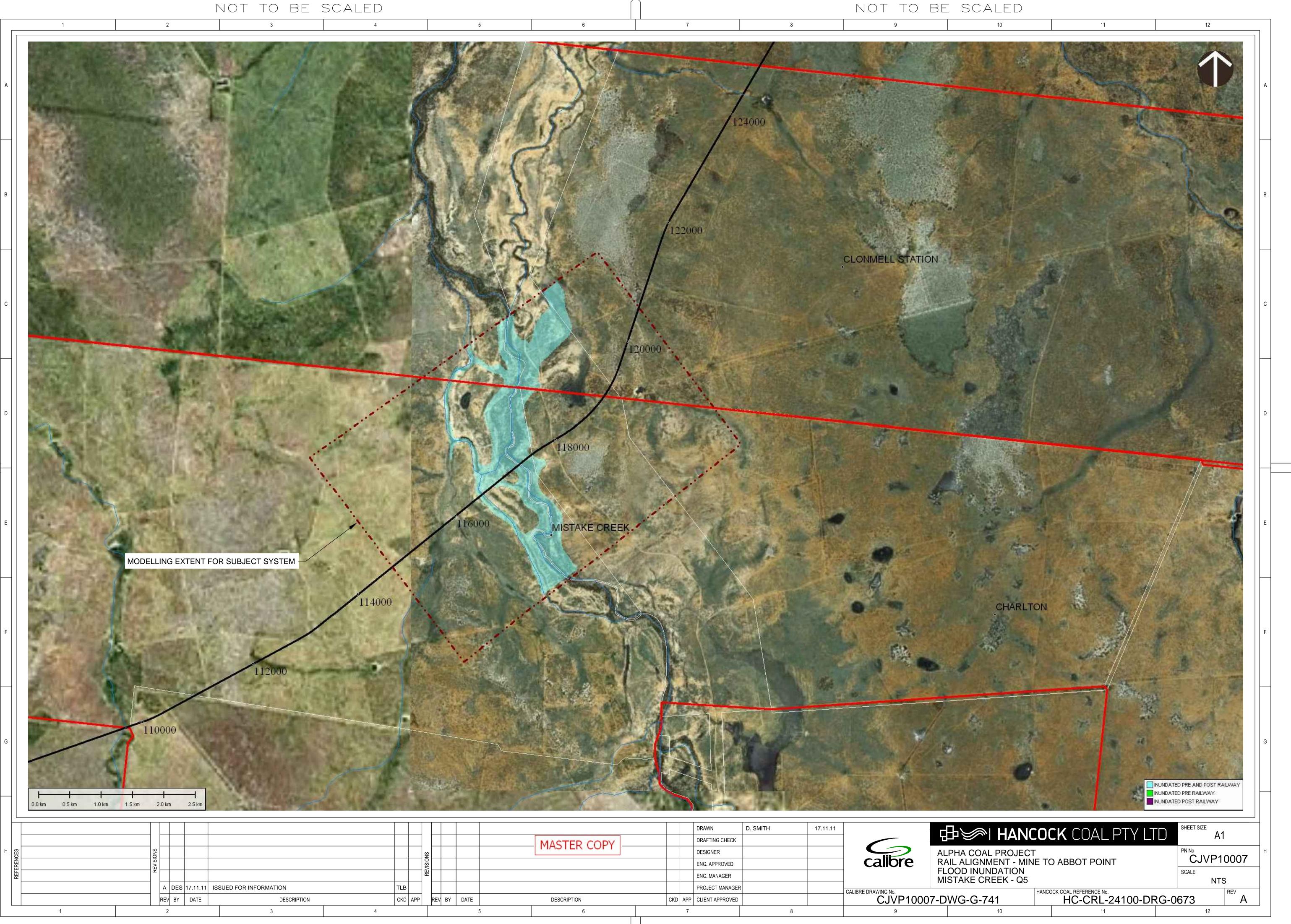
0					mis	take	cree	ek_72	2h50	ý						
0 3	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 4	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 5 0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6 23	22.5	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23
23 7 36	36.1	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36
50 8 6	6.3	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
9 0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 10 0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 11 0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12 10	10.3	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
10 13 15	15.5	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
13 14 0	0.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15 0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 16 0	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0																
0	128.6	129	129	129	129	129	129	129	129	129	129	129	129	129	129	129
0 Tot. 129 Time	128.6	รเ	129 ub- rea R	129 S	129 т	129 U	129 V	129 W	129	129	129	129	129	129	129	129
0 Tot. 129 Time	128.6 Catch	St Ai	ub- rea						129	129	129	129	129	129	129	129
0 Tot. 129 Time Incs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	128.6 Catch ment 34.9 2.7 0.0 0.0 0.0 0.0 22.5 36.1 6.3 0.0 0.0 10.3 15.5 0.3 0.0 0.0	SI AI Q 35 30 0 0 23 36 0 0 23 36 0 0 10 15 0 0 0 0	ub- rea 35 3 0 0 23 36 0 0 23 36 0 0 10 15 0 0 0	S 35 30 00 23 36 00 23 60 00 10 15 00 00	T 35 30 00 23 36 00 00 10 15 00 00	U 35 3 0 0 23 36 0 0 23 36 0 0 10 15 0 0 0 0	V 35 3 0 0 0 23 366 0 0 0 10 15 0 0 0	W 35 3 0 0 23 6 0 0 23 6 0 0 10 15 0 0 0	129	129	129	129	129	129	129	129

mistake creek_72h50y Parameters: kc = 150.00 m = 0.85Initial loss (mm) Cont. loss (mm/h) Loss parameters 25.00 2.50 *** Calculated hydrograph, Subcatchment: 1.10 Hydrograph Calc. Peak discharge,m³/s 942.3 Time to peak, h 72.0 Volume, m³ 3.51E+08 Time to centroid,h Lag (c.m. to c.m.),h 92.3 66.3 Lag to peak, h 46.1 Hydrograph summary Site Description 01 Calculated hydrograph, Subcatchment: 1.10 Inc Time Hyd0001 4.00 0.000 1 2 81.321 8.00 3 12.00 186.507 456789 16.00 155.557 152.981 175.390 20.00 24.00 194.661 28.00 32.00 288.922 36.00 496.296 621.957 10 40.00 44.00 617.683 11 48.00 12 651.934 13 52.00 699.134 773.802 14 56.00 15 60.00 887.439 16 936.833 64.00 17 68.00 926.294 18 72.00 936.532 942.316 936.015 19 76.00 20 80.00 21 84.00 920.840 22 88.00 898.123 23 92.00 871.464 24 96.00 840.327 25 805.900 100.00 26 104.00 767.602 27 28 $108.00 \\ 112.00$ 726.791 683.699 29 116.00 639.688 595.117 30 120.00 124.00 550.999 31 32 507.616 128.00 33 465.686 132.00 34 136.00 425.419 35 140.00 387.292 144.00 36 351.411 37 148.00 318.033 287.144 38 152.00 258.814 39 156.00 232.934 40 160.00

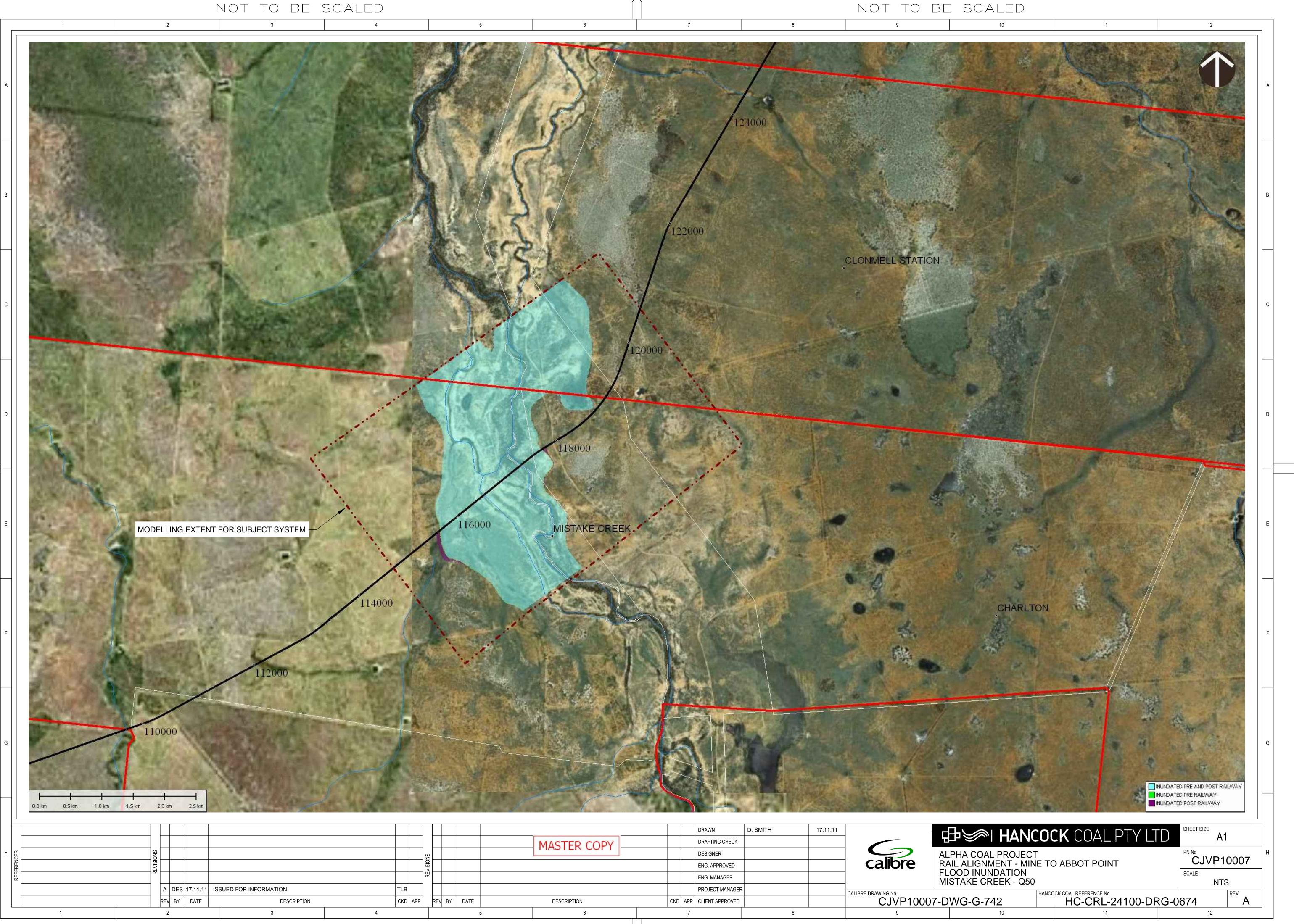

209.449

41

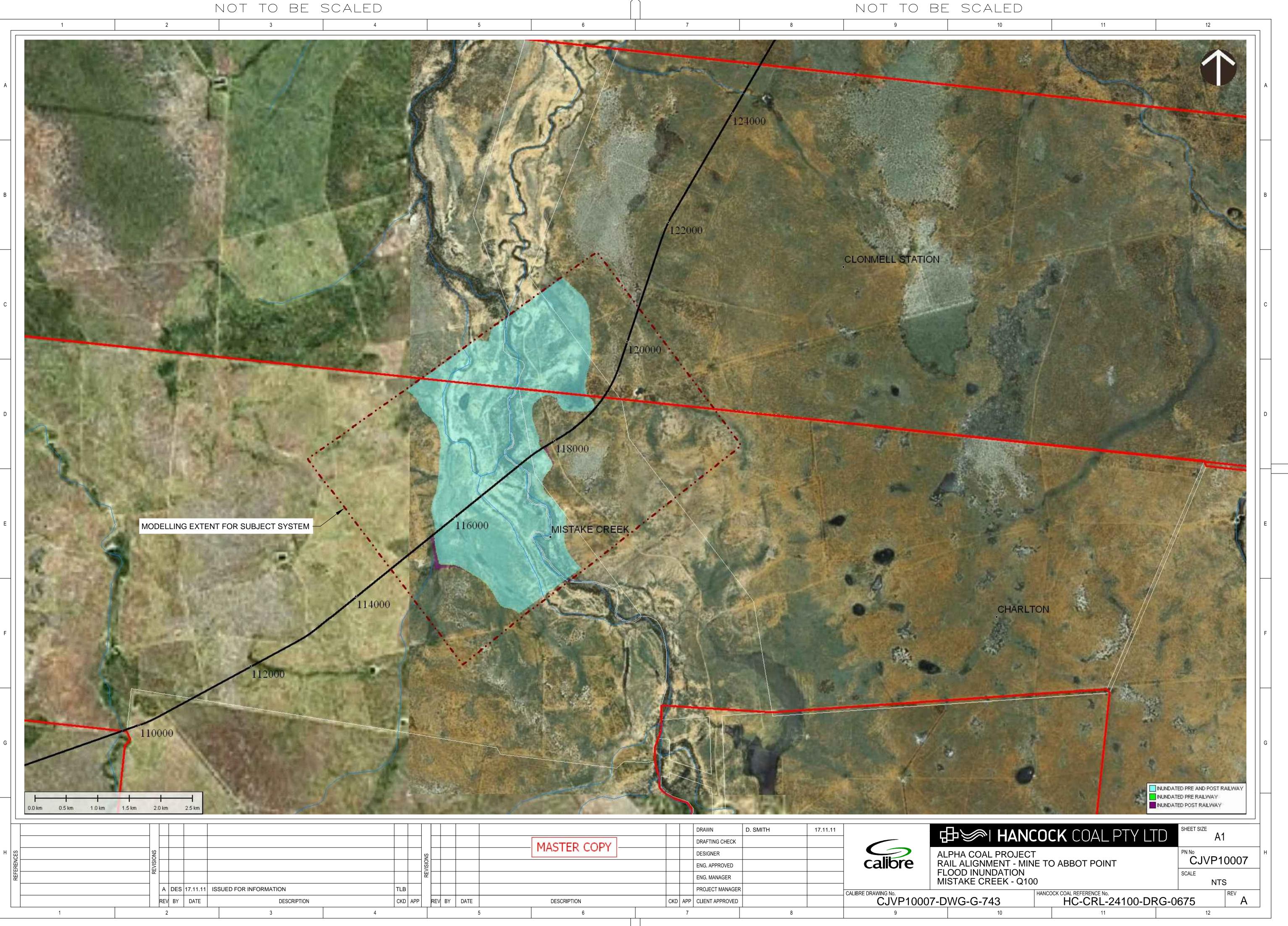
164.00

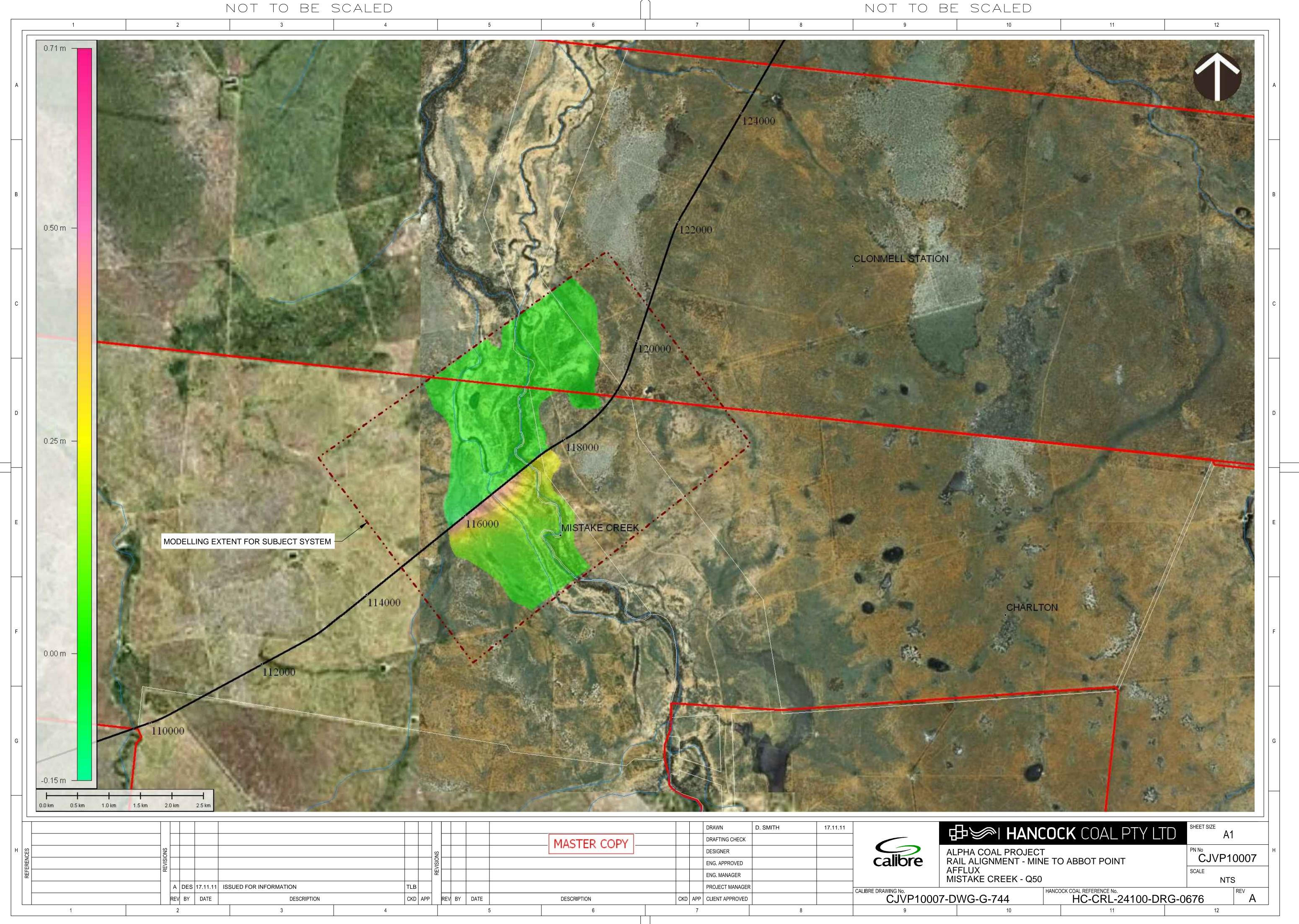

89 356.00 3.1 90 360.00 2.3 91 364.00 2.4 92 368.00 2.4 93 372.00 2.4 94 376.00 2.4 95 380.00 2.4 96 384.00 1.4 97 388.00 1.4 98 392.00 1.4 99 396.00 1.4	.515 .532 .636 .820 .075 .394 .771 .200 .677 .198 .757 .353 .980 .322 .030 .761 .353 .030 .761 .353 .030 .763 .281 .874 .692 .525 .220 .084 .225 .084
---	--

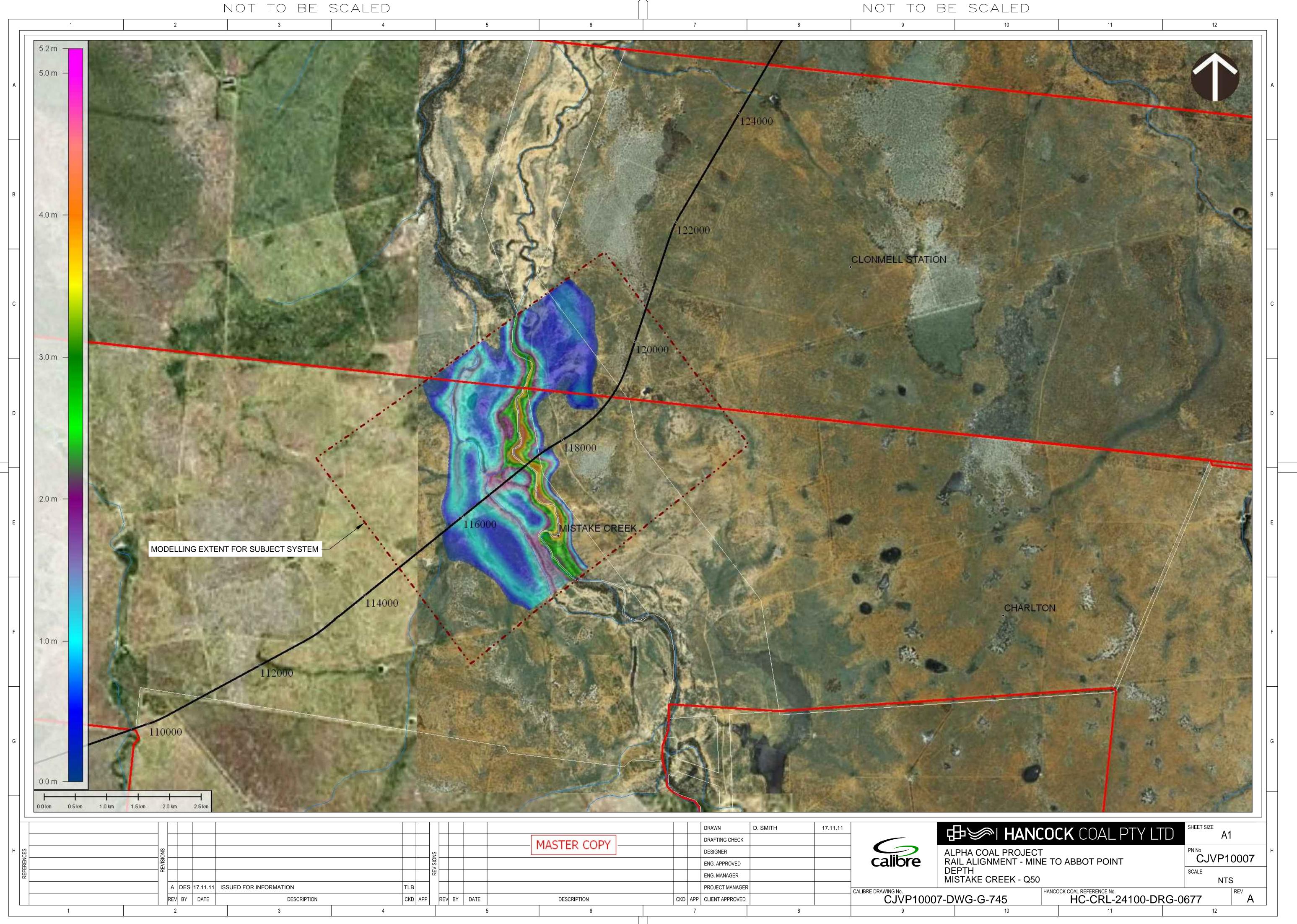
mistake creek_72h50y

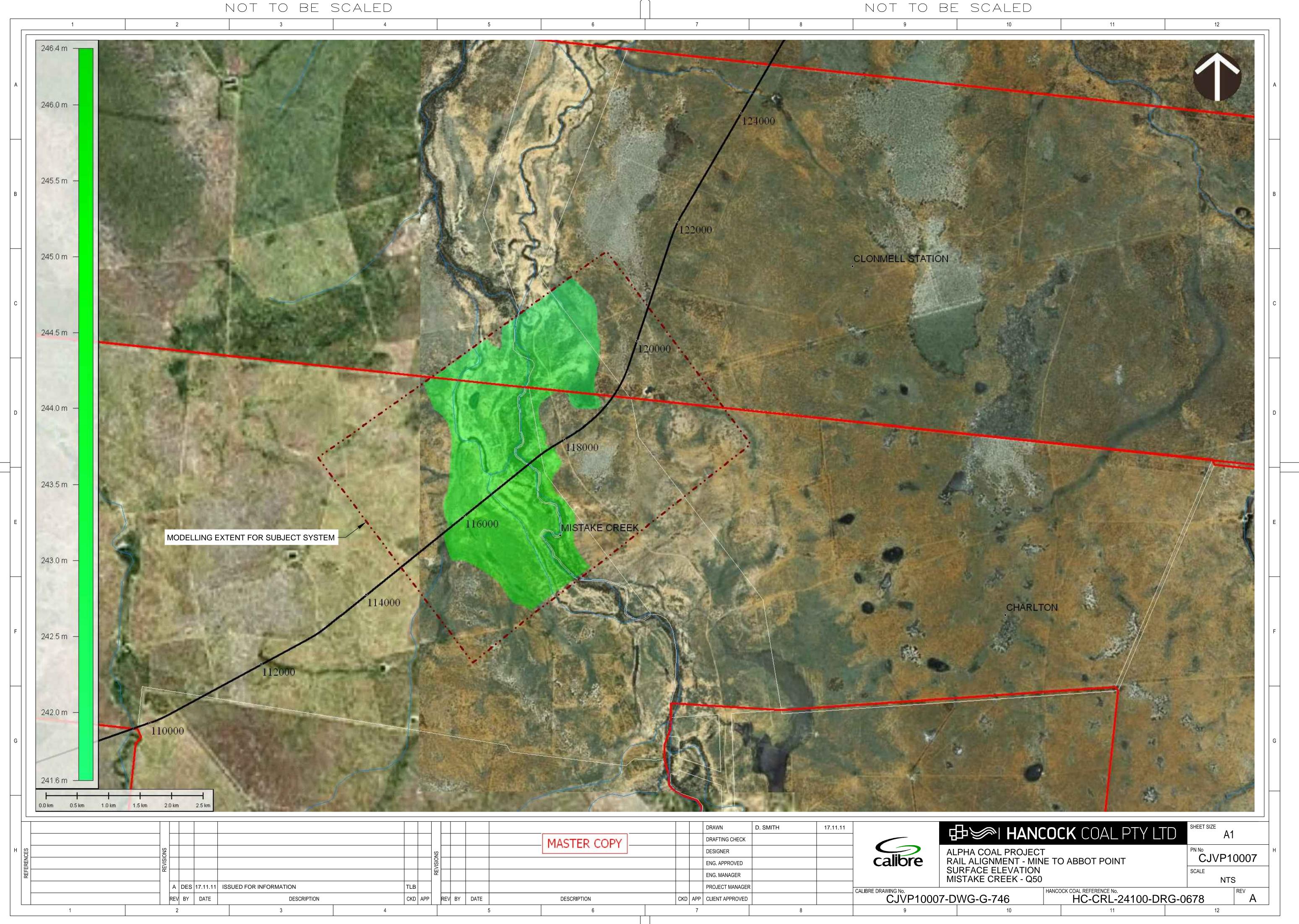


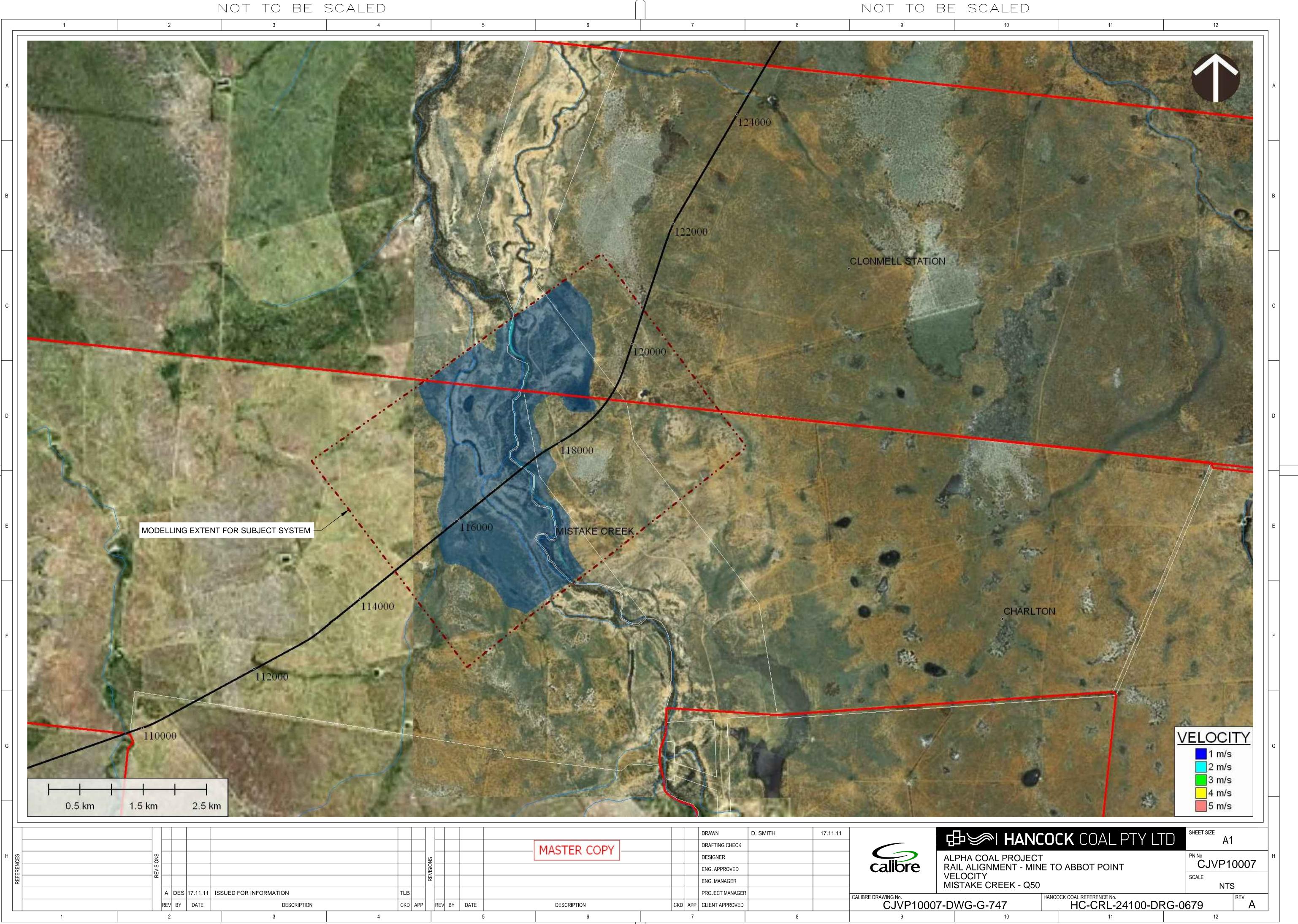
Calibre	Document No:	HC-CRL-24100-RPT-0137
Alpha Coal Project – Rail		CJVP10007-REP-C-015
Detailed Floodplain Study – Mistake Creek	Revision No:	Rev 0
	Issue Date:	November 2011
	Page No:	28


APPENDIX C FLOOD MAPS


				DRAWN	D. SMITH	17.11.11		
	MASTER COPY			DRAFTING CHECK				╘┸┺╒
	MASTER COPT			DESIGNER				ALPHA
				ENG. APPROVED			calibre	RAILAL
				ENG. MANAGER]	FLOOD MISTAK
				PROJECT MANAGER			CALIBRE DRAWING No.	
ſE	DESCRIPTION	CKD	APP	CLIENT APPROVED			CJVP1000	7-DWG-
5	6		7		8		9	


			DRAWN	D. SMITH	17.11.11		
	MASTER COPY		DRAFTING CHECK				╘┸┰
	MASTER COFT		DESIGNER				ALPHA C
			ENG. APPROVED			calibre	
			ENG. MANAGER				FLOOD II MISTAKE
			PROJECT MANAGER			CALIBRE DRAWING No.	
E DESCRIPTION		CKD APP	CLIENT APPROVED			CJVP1000	<u>)7-DWG-(</u>
ļ	5 6	7		8		9	


			DRAWN	D. SMITH	17.11.11		-
	MASTER COPY		DRAFTING CHECK				╏╌┝╶╝
	MASTER COPT		DESIGNER				LPHA C
			ENG. APPROVED				
			ENG. MANAGER				LOOD II 11STAKE
			PROJECT MANAGE	२		CALIBRE DRAWING No.	
ſE	DESCRIPTION	CKD AF	PP CLIENT APPROVED			CJVP10007-[JWG-G
5	6	7	7	8	}	9	


				DRA	AWN	D. SMITH	17.11.11		
	MASTER COPY			DRA	AFTING CHECK				╘┸┶╒
	MASTERCOTT			DES	SIGNER				ALPHA (
				ENG	G. APPROVED				
				ENG	G. MANAGER				AFFLUX MISTAKI
				PRO	OJECT MANAGER			CALIBRE DRAWING No.	
TE	DESCRIPTION	CI	KD AP	P CLIE	ENT APPROVED			CJVP10007-	DWG-
	5 6		7	7		8		9	

				DRAWN	D. SMITH	17.11.11		\square
	MASTER COPY			DRAFTING CHECK				$rr \geq$
	MASTER COFT			DESIGNER				LPHA (
				ENG. APPROVED				
				ENG. MANAGER				EPTH ISTAKI
				PROJECT MANAGER			CALIBRE DRAWING No.	
E	DESCRIPTION	СКІ	D APP	CLIENT APPROVED			CJVP10007-D	WG-0
5	6		7		8		9	

			DRAWN	D. SMITH	17.11.11		\square
	MASTER COPY		DRAFTING CHECK				┍┍┙╝
	THASTER COTT		DESIGNER				_PHA C
			ENG. APPROVED				
			ENG. MANAGER				JRFACI ISTAKE
			PROJECT MANAGER			CALIBRE DRAWING No.	
E	DESCRIPTION	CKD APP	CLIENT APPROVED			CJVP10007-D	WG-C
	5 6	7		8		9	

			DRAWN	D. SMITH	17.11.11	Г	
	MASTER COPY		DRAFTING CHECK				₽₽≈
	MASTER COPT		DESIGNER				LPHA C
			ENG. APPROVED			callore R	
			ENG. MANAGER				'ELOCIT 1ISTAKE
			PROJECT MANAGER			CALIBRE DRAWING No.	
E DESCRIPTION		CKD APP	CLIENT APPROVED			CJVP10007-[)WG-0
ļ	5 6	7		8		9	